Interaction with Vesicle Luminal Protachykinin Regulates Surface Expression of δ-Opioid Receptors and Opioid Analgesia
نویسندگان
چکیده
Opioid and tachykinin systems are involved in modulation of pain transmission in the spinal cord. Regulation of surface opioid receptors on nociceptive afferents is critical for opioid analgesia. Plasma-membrane insertion of delta-opioid receptors (DORs) is induced by stimulus-triggered exocytosis of DOR-containing large dense-core vesicles (LDCVs), but how DORs become sorted into the regulated secretory pathway is unknown. Here we report that direct interaction between protachykinin and DOR is responsible for sorting of DORs into LDCVs, allowing stimulus-induced surface insertion of DORs and DOR-mediated spinal analgesia. This interaction is mediated by the substance P domain of protachykinin and the third luminal domain of DOR. Furthermore, deletion of the preprotachykinin A gene reduced stimulus-induced surface insertion of DORs and abolished DOR-mediated spinal analgesia and morphine tolerance. Thus, protachykinin is essential for modulation of the sensitivity of nociceptive afferents to opioids, and the opioid and tachykinin systems are directly linked by protachykinin/DOR interaction.
منابع مشابه
Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons.
Morphine-induced analgesia and antinociceptive tolerance are known to be modulated by interaction between delta-opioid receptors (DORs) and mu-opioid receptors (MORs) in the pain pathway. However, evidence for expression of DORs in nociceptive small-diameter neurons in dorsal root ganglia (DRG) and for coexistence of DORs with MORs and neuropeptides has recently been challenged. We now report, ...
متن کاملOpioid receptor trafficking and interaction in nociceptors.
UNLABELLED Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are...
متن کاملRole of delivery and trafficking of delta-opioid peptide receptors in opioid analgesia and tolerance.
Changes in the number of receptors on the cell surface lead to modulations of physiological functions and pharmacological responses of neurons. Recent studies show that delta-opioid peptide (DOP) and mu-opioid peptide (MOP) receptors have distinct subcellular localizations in neurons. In nociceptive small neurons in the dorsal root ganglia, DOP receptors are sorted into neuropeptide-containing ...
متن کاملSorting of neuropeptides and neuropeptide receptors into secretory pathways.
There are two major secretory pathways in neurons, the regulated pathway and the constitutive pathway. Neuropeptides and other regulated secretory proteins are known to be sorted into large dense-core vesicles of the regulated pathway in the trans-Golgi network and are secreted upon stimulus-induced increases in intracellular Ca(2+). The newly synthesized cell surface receptors are usually sort...
متن کاملFacilitation of μ-Opioid Receptor Activity by Preventing δ-Opioid Receptor-Mediated Codegradation
δ-opioid receptors (DORs) form heteromers with μ-opioid receptors (MORs) and negatively regulate MOR-mediated spinal analgesia. However, the underlying mechanism remains largely unclear. The present study shows that the activity of MORs can be enhanced by preventing MORs from DOR-mediated codegradation. Treatment with DOR-specific agonists led to endocytosis of both DORs and MORs. These recepto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 122 شماره
صفحات -
تاریخ انتشار 2005